Reciproot Algorithm—Correctly
Rounded? *

Ren-Cang Li
Department of Mathematics

University of California at Berkeley
Berkeley, California 94720

September 6, 1992

Computer Science Division Technical Report UCB//CSD-94-850, University
of California, Berkeley, CA 94720, December, 1994.

Abstract

This note attempts to give a detailed error analysis of Reciproot
Algorithm proposed by Kahan and Ng in 1986. It is showed that
the algorithm yields correctly rounded square root under all rounding

modes.

1 Initial Approximation

Let 2¢ and 1 be the leading and the trailing 32-bit words of a floating point
number z (in IEEE double format) respectively

*This material is based in part upon work supported by Argonne National Laboratory
under grant No. 20552402 and the University of Tennessee through the Advanced Re-
search Projects Agency under contract No. DAATL03-91-C-0047, by the National Science
Foundation under grant No. ASC-9005933, and by the National Science Infrastructure
grants No. CDA-8722788 and CDA-9401156.

Report Documentation Page

Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,

including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it

does not display a currently valid OMB control number.

1. REPORT DATE
06 SEP 1992

2. REPORT TYPE

3. DATES COVERED
00-00-1992 to 00-00-1992

4. TITLEAND SUBTITLE

Reciproot Algorithm -- Correctly Rounded?

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical

Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR’'S REPORT

NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Thisnote attemptsto give a detailed error analysis of Reciproot Algorithm proposed by Kahan and Ngin
1986. It is showed that the algorithm yields a correctly rounded squareroot under all rounding modes.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a REPORT
unclassified

b. ABSTRACT
unclassified

c. THISPAGE
unclassified

17. LIMITATION OF
ABSTRACT

Same as
Report (SAR)

18. NUMBER
OF PAGES

13

19a. NAME OF
RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Reciproot Algorithm—Correctly Rounded? 2

1 11 52
x: ‘ s ‘ € ‘ f ‘
1 11 20
20 ‘ s ‘ e ‘ fi ‘
32
Lyt ‘ I ‘

By performing shifts and subtracts on g and yo (both regarded as integers),
we obtain a 7-bit approximation of 1/y/x as follows.

k := 0x5fe80000— (xo > 1);
Yo = k—"T2[63&(k > 14)].

Here k is a 32-bit integer and T'2[-] is an integer array containing correction
terms. Now magically the floating value of y (y’s leading 32-bit word is yo,
the value of its trailing word 1 is set to zero) approximates 1/y/x to more
than 7-bit.
Value of T2[64] are This

table needs to

0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xal395, Oxbe7a, 0xd866,
be checked!

0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0%x15c98,0x16e34,0x17eb5f,
0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5¢c4,0x1bb01,0x1bfde,0x1c28d,
0x1c2de,0x1c0db,0x1ba73,0x1bl11c,0x1a4b5,0x1953d,0x18266,0x16be0,
0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
0x1d16d,0x1d77b,0x1dddf ,0xle2ad,0x1ebbf,0x1e6e8,0x1e654,0x1e3cd,
0x1df2a,0x1d635,0x1cb16,0x1be2¢c,0xlaede,0x19bde,0x1868¢e,0x16e2e,
0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, O0xledd.

Now we prove our claimed accuracy of y as an initial approximation to
1/y/z. As a matter of fact, z can be written as = (—1)°2° x 1.f = 2° x 1.f.

Tedious analysis shows that

Reciproot Algorithm—Correctly Rounded? 3

where f is fi except its last bit is set to zero.

Case (i): e is odd and bits of f| are not all zero.

Denote o = 1.f]. Since 1 < a <2 —27" we have 272 < 1 — 5 < 2- 1
Assume for the moment that o > 1, then 1 — § < 27'. Write

«
1— 5 == 0.0@2@3@4@5@6 o doy.

63&(k > 14) = Oazasasasag which gives us valuable information to construct

correction terms. Let
t = 0.0azasa4asa6, €= 0.000001, = 27°,

Now we know that ¢t <1 —

N R

<t + ¢, which produces
2(1 —t) —2e < o < 2(1 —1).

(if t = 0, we have 2(1 —¢) < a < 2.)
We are required to choose a number d associated with those information
so that

1+1-— % —d approximates accurately enough.

2
V2 x1.f
As this approximation could not be correct to more than 20-bits, we can

restate it as

(84 .
1+1-— 5~ d approximates ——— accurately enough.

V2a

Elementary arguments show that the best d is

-2 -2
q - Itide— 2(2(1—t—c)) tl+d 2(2(1-1))
B 2
1 1
Ittte— =ttt - 75
B 2

IR 1 1 N 1
B 2 2\/1—t V1—t—¢)’

Reciproot Algorithm—Correctly Rounded? 4

except possibly for one case when the interval [2(1 — ¢ —¢€),2(1 —¢)] contains
\3/5, for which ¢ = 0.010111; = 0.359375. Individual check shows that this
gives no trouble. To find the largest error in using 1+1— 5 —d to approximate

\/%, it suffices for us to look at

2
2(2(1 — 1))

B e+1 1 1
2 2\ VT—t—¢ VI—1

€ 1
:‘5(1_<1_t_6>m+<1_t>m)’

whose absolute value for all possible 0 < ¢ < 27! is less than or equal to
£ x 04941 < § =275

Case (ii): e is even and bits of f| are not all zero.

Denote o = 1.f]. Since 1 < a <2 —27" we have 27! +2720 < ?’_Ta < 1.
Assume for the moment that « > 1, then ?’_Ta < 1. Write

14+t—d—

33—«
2

== 0.1@2@3@4@5@6 s doy.

63&(k > 14) = lasasasasag which gives us valuable information to construct

correction terms. Let
t = 0.1azasasasag, €= 0.000001, = 27°,

Now we know that ¢ < ?’_Ta <t + ¢, which produces

3—2(t4¢) <a <3 -2t

We are required to choose a number d associated with those information
so that
3—« 2

1+ —— —d approximates —— accurately enough.

2 VIS

Reciproot Algorithm—Correctly Rounded? 5

As this approximation could not be correct to more than 20-bits, we can
restate it as
3 —
1+ — T4 approximates —= accurately enough.

2 Ve

Elementary arguments show that the best d is

1—|—t—|—6—m—|—1—|—t *32

2

€ 1 1
— 4t + ,
2 (¢3—2t \/S—Z(t—l—e))
except possibly for one case when the interval [3 — 2(¢ + ¢),3 — 2t] contains

\3/41, for which ¢ = 0.101101, = 0.703125. Individual check shows that this

gives no trouble. To find the largest error in using ?’_Ta — d to approximate

%, it suffices for us to look at
2

1—|—t—d—

1
(\/3—2t—|—6 \/3—%)

4
2 (1 (3= 2(t+e))V/3 =2+ (3 —21) 3—2(t+6)) ’
whose absolute value for all possible 0.15 < ¢ < 0.1111115, is less than or
equal to £ x 0.9543 ~ Q7067485
Case (iii): bits of f| are all zero.
In this case, « = 1. Now if e is odd, then £ = 0.100000,. The correspond-
ing d is gotten as in Case (ii). Computation shows the error cannot exceed

0.003502 ~ 2781576,
If e is even, then ¢ = 0.000000;. The corresponding d is gotten as in Case

(i). Computation shows the error cannot exceed 0.00386 ~ 2750172,
Now we reach the following conclusion: The initial guess gives up to 7

correct bits or more if e is even; while up to 8 correct bits or more if e is odd.

Reciproot Algorithm—Correctly Rounded? 6

2 Iteration Refinement

Apply Reciproot iteration three times to y and multiply the result by = to
get an approximation z that matches \/z to about 1 ulp. To be exact, we
will have

— 1.0654 ulp < z — /x < 1ulp. (3)

Set rounding mode to Round-to-nearest and sequentially do

y = y(1.5—0.52y7), (4)
y = y((1.5—27) — 0.52y%), (5)
z = ay, (6)
z = z40.52(1 — zy). (7)

To analyze the accuracy of y and z after each step, without loss of gener-
ality, we assume 1 < # < 4. (x =1 or 4 can be checked individually.) Then
1<\/5<2and1>ﬁ>0.12.

e After initial approximation and before (4): y can be written as
! +
=—+c¢
y \/5 b

where |e] < 278067485 4f | < 7 < 2; Je| < 277 if 2 < 2 < 4.

o After (4) and before (5): y can be written as

1
y = ﬁ—1.562\/_—0.563:1}—|—6/
1
= ——|—617

Va
where ¢ is for rounding errors. Note that if 1 < @ < 2, 1.562\/5 +
0.5¢3r < 271804M7 and if 2 < 2 < 4, 1.5¢2\/x + 05630 < 27164, As
rounding error at this stage are negligible unless ¢ ~ 2726, we conclude
that: |e] <272 4f 1 < 2 < 2; and || < 2714 if 2 < 2 < 4. Further

more ¢; < 0 unless it is of order 27°2.

Reciproot Algorithm—Correctly Rounded? 7

e After (5) and before (6): y can be written as

1 _ 1
y = ﬁ — 271 (ﬁ + 61) — 1.5z — 0562 + €’
1

ﬁ—ﬁza

where ¢” is for rounding errors. Note that if 1 < = < 2, 1.56%\/5 +
0.56:1))1' < 2729009967 and if 2 < x < 4, 1.562\/5—|— 0.5e3x < 273224 Ag

rounding error at this stage are negligible, we conclude that: 274 <
€ < 2729006 4f | « 2 < 2;and 27 < e < 272B i 2 < 2 < 4.

e After (6) and before (7): 2z = fl(zy) = \/T— €22 +€m, where |¢,, | < 2753

i.e., at most %ulp with respect to 1.
e Computations in (7): fl(zy) <1 and

fllzy)=1-— 2ea/T + 631’ + S + ¢+ (neg. terms),
T

G

where |e/ | <275 ie., at most iulp with respect to 1. From now on

2

“(neg. terms)” refers to some negligible terms in comparing with the

unit in the last place of a corresponding expression. No rounding error

in calculating

1 — fl(zy) = 265/ — 30 — n e, + (neg. terms).

VT
Note
F10.52(1 — zy))

= (Vo —ex+e6y) (62 T =g m — 77” + (neg. terms))
€m €

!
= € — 1.563:1;\/5 —3 = 77”\/5 + € + (neg. terms),

where |€/ | < 2753 |eyx]. Now

Fl(z+0.52(1 — zy))

Reciproot Algorithm—Correctly Rounded? 8

€m €

!
= \/E—ezx—l—em—l—ezx—lﬁe%x :1;—7—77”\/5
+er +er + (neg. terms)
!
= Vo — 1.563:1;\/5 + %ﬂ — %”\/5 + €/ + (neg. terms)
= Vatu,
where |el| <275, i.e., at most $ ulp with respect to 1. Note

€ e
m
— = =ty

<11+11+1l 1ul
—u —u —u = u
2 9 Sqwp TP o wp P

with respect to 1. On the other hand, 0 > —1.5¢3x/x > —0.0654 ulp if
1 <z <2,and 0 > —1.5¢2x/x > —0.0021 ulp if 2 < x < 4. Therefore
we have

—1.0654ulp < n < 1ulp.

We have just proved (3).

3 Final Adjustment

By twiddling the last bit of z it is possible to force z to be correctly rounded
according to the prevailing rounding mode as follows. Let r and ¢ be copies of
the rounding mode and inexact flag before entering the square root program.
Also we use the expression z4 ulp for the next representable floating numbers

(up and down) of z.

e Case RN—round-to-nearest: In this case, if z — \/z > %ulp, then do
z=z—ulp;if z — /z < —% ulp, then do z = z + ulp; otherwise z is

correctly rounded already.
Set rounding mode to round-toward-zero which means “chopped”.

We write z = \/z + 1 = \/z + L ulp + € where —1.564 ulp < ¢ < Lulp.
Note

z(z— ulp) = z*—2zx ulp

Reciproot Algorithm—Correctly Rounded? 9

= 242V + 10—z x ulp—1n x ulp
1 1
= :1;—|—26\/5—|—<§ulp—|—6) <e—§ulp)
1
= :1;—|—26\/5—|—62—1ulp2.
So z(z — ulp) > « if and only if

< i ulp® ulp®
€

e S :

As computations are supposed to be done under round-toward-zero, we

have fl(z(z — ulp)) > « if and only if (8) holds.

Theorem 1 There is no IEEE double precision floating point number
x such that

1
2 =+\r+ 5 ulp + ¢
is an IEEE double precision floating point number for some
ulp?

ek

On the other hand, we write z = \/z — % ulp — € where —1.5ulp < e <
0.5654 ulp. Note

0<ex<

z(z+ ulp) = z*+zx ulp
= 24 20/r +1* + V& x ulp+1n x ulp
BNV e (e
= :1;—26\/5+62—iulp2.
So z(z + ulp) > z if and only if
L ulp? ulp’

< < . (9)
VT 4 y/z + Lulp? 8z

As computations are supposed to be done under round-toward-zero, we

have fl(z(z + ulp)) > « if and only if (9) holds.

€

Reciproot Algorithm—Correctly Rounded? 10

Theorem 2 There is no IEEE double precision floating point number
x such that

1
z:ﬁ—ﬁulp—e

is an IEEE double precision floating point number for some

12
0<e< e

Se<3/

So the following adjustment

case RN: ... round-to-nearest
if (x<= z*(z-ulp)...chopped) z = z - ulp; else
if (x<= z*(z+ulp)...chopped) z = z; else z = z+ulp.

will produce a z with

1
|z — Vx| <§ulp

Proofs of the above theorems will be given in the next section at the

end of this note.

Case RZ or Case RM—round-to-zero or round-to-—oo: In this case, if
z > +/x, then do z = z— ulp; if z — /2 < —ulp, then do z = z + ulp;

otherwise z is correctly rounded already.
Reset rounding mode to round-to-+4oo.

Note z? > z if and only if 2 > \/z, which also holds in floating point
operations under RP. (z + ulp)? < z if and only if z — /2 < —ulp,

which also holds in floating point operations under RP.

So the following adjustment

case RZ:case RM: ... round-to-zero

or round-to-negative infinity

Reciproot Algorithm—Correctly Rounded? 11

if(x<z*z ... rounded up) z = z - ulp; else

if (x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp.

will yield correctly rounded result.

e Case RP—round-to-+oco. In this case, if —1ulp < z—/z < 0, then do
z =z + ulp; else if z — \/x < —ulp, then do z = z + 2ulp; otherwise

z is correctly rounded already.
Under rounding mode—round-to-zero.

Note if (z + ulp)? < z if and only if z — \/z < — ulp, which also holds
in floating point operations under RZ. (2 + ulp)? < < z? if and only
if —lulp <z —/x <0, which also holds in floating point operations
under R7Z.

So the following adjustment

case RP: ... round-to-positive infinity
if (x> (z+ulp)*(z+ulp) .. .chopped) z = z+2*ulp; else
if(x>z*z ...chopped) z = z+ulp.

will yield correctly rounded result.

To determine whether z is an exact square root of x, we notice an nec-
essary condition for z to be an exact square root of z is that the training
26 bits of z must be zero. So if the training 26 bits of 2z is not zero, raise
Inexact flag; else if e is odd and the 26th bit of z is 1 then z is not exact;
else if z? # x (at this moment fl(2?) = 2?), then z is not exact; otherwise z

is exact.

Reciproot Algorithm—Correctly Rounded? 12

4 Proofs of Theorems 1 and 2

Let us prove Theorem 1 first. Assume to the contrary, there were an IEEE
double precision floating point number x as described in the theorem. By

scaling = and z properly, we may assume that 1 < = < 4. Note
r = (22— §ulp—e)2
2 1 2 2
= z —zulp—l—zulp — 2¢z + eulp + €. (10)

As now, ulp = 27°2, and thus iupo = 27196 Tt is easy to see that in binary

form

2
zZ —Z ulp = d10p.G_10_2 "+ d_104,

where a;’s are either 1 or 0 and a4, ag cannot be 0 at the same time. Therefore

1
22 —Z ulp + 1 ulp2 = d1dg.d_1ad_9 """ Cl_10401,

which proves € could not be 0. If, however, ¢ > 0, then
1
0> —2ez+ e +culp = e(—22 4 e+ ulp) > —2¢ez > —1 ulp?.

Thus the binary expansion of 22 — zulp + culp + i ulp — 2ez + €% could not
match that of x, contradicting (10). Theorem 1 is proved.

To prove Theorem 2, we apply similar trick as we just did. Suppose we
had such an TEEE double precision floating point number = as described in

the theorem. Without loss of generality, we may assume 1 < x < 4. Note
1 2
r = (z—|—§ulp—|—e)
1
= z:z—l—z:ulp—l—ZulpZ—l—Zez—l—eulp—l—e2 (11)

As now, ulp = 27°2, and thus iulp2 = 27196 Tt is easy to see that in binary
form

2
24z ulp = d10p.0_10_92 " Ud_104,

Reciproot Algorithm—Correctly Rounded? 13

where a;’s are either 1 or 0 and a4, ag cannot be 0 at the same time. Since
1 2 2 —104
0<1ulp +2ez+eulp+ et <2777,

the binary expansion of z? + z ulp + i ulp2 +2ez+eulp + €% could not match
that of x, contradicting (11). Theorem 2 is proved.

References

[1] W. Kahan and K. C. Ng, SQRT, 1986.

